日韩经典一区,日韩a免费,国产欧美一区二区三区观看,日韩一区国产二区欧美三,精品日韩欧美一区二区三区在线播放,国产免费一级视频,日韩国产一区二区

初中數(shù)學(xué)知識點總結(jié)

時間:2024-12-19 16:45:07 玉華 知識點總結(jié) 我要投稿

人教版初中數(shù)學(xué)知識點總結(jié)匯總

  總結(jié)是在某一時期、某一項目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價,從而得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它可使零星的、膚淺的、表面的感性認(rèn)知上升到全面的、系統(tǒng)的、本質(zhì)的理性認(rèn)識上來,因此,讓我們寫一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編整理的人教版初中數(shù)學(xué)知識點總結(jié),歡迎閱讀與收藏。

人教版初中數(shù)學(xué)知識點總結(jié)匯總

  初中數(shù)學(xué)知識點總結(jié) 1

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

 。2)有理數(shù)的分類:① ②

  2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

  3.相反數(shù):

 。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對值:

 。1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

 。2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5.有理數(shù)比大。

 。1)正數(shù)的絕對值越大,這個數(shù)越大;

 。2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0;

 。3)正數(shù)大于一切負(fù)數(shù);

 。4)兩個負(fù)數(shù)比大小,絕對值大的反而。

 。5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

 。6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。

  7.有理數(shù)加法法則:

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

 。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個數(shù)與0相加,仍得這個數(shù)。

  8.有理數(shù)加法的`運算律:

  (1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

  9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。

  10.有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

  (2)任何數(shù)同零相乘都得零;

 。3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。

  11.有理數(shù)乘法的運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù)。

  13.有理數(shù)乘方的法則:

 。1)正數(shù)的任何次冪都是正數(shù);

 。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

 。1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

  15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

  18.混合運算法則:先乘方,后乘除,最后加減。

  本章內(nèi)容要求學(xué)生正確認(rèn)識有理數(shù)的概念,在實際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題。

  體驗數(shù)學(xué)發(fā)展的一個重要原因是生活實際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。

  初中數(shù)學(xué)知識點總結(jié) 2

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

  就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

  圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個圓叫同心圓。

  能夠重合的兩個圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點的圓

  1、過三點的圓

  過三點的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個點確定一個圓。

  經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個步驟:

 、偌僭O(shè)命題的結(jié)論不成立;

 、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

 、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個角是鈍角。

  證明:設(shè)有兩個以上是鈍角

  則兩個鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個以上是鈍角。

  即最多只能有一個是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱圖形,經(jīng)過圓心的'每一條直線都是它的對稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對稱中心的中心對稱圖形。

  實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。

  頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

  五、圓周角

  頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

  初中數(shù)學(xué)知識點總結(jié) 3

  1.圓是以圓心為對稱中心的中心對稱圖形;同圓或等圓的半徑相等。

  2.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

  3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。

  4.圓是定點的距離等于定長的點的集合。

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合;圓的.外部可以看作是圓心的距離大于半徑的點的集合。

  6.不在同一直線上的三點確定一個圓。

  7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

  推論1:

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧;

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  8.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  9.定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角。

  10.經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心。

  11.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑。

  13.經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  14.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。

  15.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角。

  16.如果兩個圓相切,那么切點一定在連心線上。

  17.

 、賰蓤A外離d>R+r

 、趦蓤A外切d=R+r

  ③兩圓相交d>R-r)

 、軆蓤A內(nèi)切d=R-r(R>r)

 、輧蓤A內(nèi)含d=r)

  18.定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。

  19.定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓。

  20.弧長計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

  21.內(nèi)公切線長= d-(R-r)外公切線長= d-(R+r)。

  22.定理一條弧所對的圓周角等于它所對的圓心角的一半。

  23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  初中數(shù)學(xué)知識點總結(jié) 4

  誘導(dǎo)公式的本質(zhì)

  所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

  常用的誘導(dǎo)公式

  公式一: 設(shè)為任意角,終邊相同的角的`同一三角函數(shù)的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  初中數(shù)學(xué)知識點總結(jié) 5

  相關(guān)的角:

  1、對頂角:一個角的兩邊分別是另一個角的兩邊的.反向延長線,這兩個角叫做對頂角。

  2、互為補(bǔ)角:如果兩個角的和是一個平角,這兩個角做互為補(bǔ)角。

  3、互為余角:如果兩個角的和是一個直角,這兩個角叫做互為余角。

  4、鄰補(bǔ)角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補(bǔ)角。

  注意:互余、互補(bǔ)是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補(bǔ)角則要求兩個角有特殊的位置關(guān)系。

  角的性質(zhì)

  1、對頂角相等。

  2、同角或等角的余角相等。

  3、同角或等角的補(bǔ)角相等。

  初中數(shù)學(xué)知識點總結(jié) 6

  一、函數(shù)及其相關(guān)概念

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點

  (1)解析法

  兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值

  (2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點

  (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

  二、相交線與平行線

  1、知識網(wǎng)絡(luò)結(jié)構(gòu)

  2、知識要點

 。1)在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

 。2)在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

 。3)兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是

  鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,

  與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;+=180°。

  3、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質(zhì):對頂角相等。如圖1所示,與互為對頂角。=; =。

  4、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,

  其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時,⊥。

  垂線的性質(zhì):

  性質(zhì)1:過一點有且只有一條直線與已知直線垂直。

  性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

  性質(zhì)3:如圖2所示,當(dāng)a⊥b時,====90°。

  點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

  5、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:

  在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣的兩個角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。

  在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫內(nèi)錯角。圖3中,共有對內(nèi)錯角:與是內(nèi)錯角;與是內(nèi)錯角。

  在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內(nèi)角。圖3中,共有對同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。

  三、實數(shù)

  1、實數(shù)的分類

 。1)按定義分類:

 。2)按性質(zhì)符號分類:

  注:0既不是正數(shù)也不是負(fù)數(shù).

  2、實數(shù)的相關(guān)概念

 。1)相反數(shù)

 、俅鷶(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.

 、趲缀我饬x:在數(shù)軸上原點的兩側(cè),與原點距離相等的兩個點表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱.

 、刍橄喾磾(shù)的`兩個數(shù)之和等于0.a、b互為相反數(shù)a+b=0.

  (2)絕對值|a|≥0.

 。3)倒數(shù)(1)0沒有倒數(shù)(2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù).

 。4)平方根

  ①如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負(fù)數(shù)沒有平方根.a(a≥0)的平方根記作.

  ②一個正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.

  (5)立方根

  如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零.

  3、實數(shù)與數(shù)軸

  數(shù)軸定義:規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.

  4、實數(shù)大小的比較

 。1)對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大.

 。2)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負(fù)數(shù);絕對值大的反而小.

 。3)無理數(shù)的比較大小:

  初中數(shù)學(xué)知識點總結(jié) 7

  1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

  2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1 ……(檢驗方程的解)。

  4.列一元一次方程解應(yīng)用題:

 。1)讀題分析法:多用于“和,差,倍,分問題”

  仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。

  (2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。

  11.列方程解應(yīng)用題的常用公式:

 。1)行程問題:距離=速度·時間;

  (2)工程問題:工作量=工效·工時;

 。3)比率問題:部分=全體·比率;

 。4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

  (5)商品價格問題:售價=定價·折·,利潤=售價—成本,;

 。6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

  S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

  本章內(nèi)容是代數(shù)學(xué)的`核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動和合作交流,讓學(xué)生在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識,提升能力,體會數(shù)學(xué)思想方法。

  初中數(shù)學(xué)知識點總結(jié) 8

  一、數(shù)與代數(shù)

  a、數(shù)與式:

  1、有理數(shù):

  ①整數(shù)→正整數(shù)/0/負(fù)整數(shù)

 、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

  數(shù)軸:

  ①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

 、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

  絕對值:

  ①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。

 、谡龜(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負(fù)數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

  ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  ③一個數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:

 、賰蓴(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

 、谌魏螖(shù)與0相乘得0。

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  除法:

  ①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求n個相同因數(shù)a的積的運算叫做乘方,乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:

 、偃绻粋正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術(shù)平方根。

 、谌绻粋數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根。

 、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

 、芮笠粋數(shù)a的平方根運算,叫做開平方,其中a叫做被開方數(shù)。

  立方根:

 、偃绻粋數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根。

  ②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

 、矍笠粋數(shù)a的立方根的運算叫開立方,其中a叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

  ②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。

 、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:

 、偎帜赶嗤⑶蚁嗤帜傅闹笖(shù)也相同的項,叫做同類項。

 、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴棥

 、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

 、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的`次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:am+an=a(m+n)

  (am)n=amn

  (a/b)n=an/bn 除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

 、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

  ①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

  ①整式a除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  初中數(shù)學(xué)知識點:直線的位置與常數(shù)的關(guān)系

 、賙>0則直線的傾斜角為銳角

  ②k<0則直線的傾斜角為鈍角

 、蹐D像越陡|k|越大

  ④b>0直線與y軸的交點在x軸的上方

 、輇<0直線與y軸的交點在x軸的下方

  初中數(shù)學(xué)知識點總結(jié) 9

  定義

  對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形

  比值與比的概念

  比值是一個具體的數(shù)字如:AB/EF=2

  而比不是一個具體的數(shù)字如:AB/EF=2:1判定方法

  證兩個相似三角形應(yīng)該把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個三角形的對應(yīng)頂點可能沒有寫在對應(yīng)的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個三角形的對應(yīng)頂點寫在了對應(yīng)的位置上。

  方法一(預(yù)備定理)

  平行于三角形一邊的直線截其它兩邊所在的`直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個引理的證明方法需要平行線與線段成比例的證明)

  方法二

  如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。

  方法三

  如果兩個三角形的兩組對應(yīng)邊成比例,并且相應(yīng)的夾角相等,

  那么這兩個三角形相似

  方法四

  如果兩個三角形的三組對應(yīng)邊成比例,那么這兩個三角形相似

  方法五(定義)

  對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形

  三個基本型

  Z型A型反A型

  方法六

  兩個直角三角形中,斜邊與直角邊對應(yīng)成比例,那么兩三角形相似。一定相似的三角形

  1、兩個全等的三角形

  (全等三角形是特殊的相似三角形,相似比為1:1)

  2、兩個等腰三角形

  (兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)

  3、兩個等邊三角形

  (兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)

  4、直角三角形中由斜邊的高形成的三個三角形(母子三角形)

  圖形的學(xué)習(xí)需要大家對于知識的詳細(xì)了解和滲透,而不是一帶而過。

  初中數(shù)學(xué)知識點總結(jié) 10

  ①直線和圓無公共點,稱相離。 AB與圓O相離,d>r。

 、谥本和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

  ③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的`切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

  平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

  當(dāng)x=-C/Ax2時,直線與圓相離;

  初中數(shù)學(xué)知識點總結(jié) 11

  其實角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。

  角的靜態(tài)定義

  具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

  角的動態(tài)定義

  一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的`圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

  角的符號

  角的符號:∠

  角的種類

  在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

  銳角:大于0°,小于90°的角叫做銳角。

  直角:等于90°的角叫做直角。

  鈍角:大于90°而小于180°的角叫做鈍角。

  平角:等于180°的角叫做平角。

  優(yōu)角:大于180°小于360°叫優(yōu)角。

  劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

  角周角:等于360°的角叫做周角。

  負(fù)角:按照順時針方向旋轉(zhuǎn)而成的角叫做負(fù)角。

  正角:逆時針旋轉(zhuǎn)的角為正角。

  0角:等于零度的角。

  特殊角

  余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。

  對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角。互為對頂角的兩個角相等。

  鄰補(bǔ)角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個角,互為鄰補(bǔ)角。

  內(nèi)錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的

  內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對角叫做內(nèi)錯角(alternate interior angle )。如:∠1和∠6,∠2和∠5

  同旁內(nèi)角:兩個角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6

  同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

  外錯角:兩條直線被第三條直線所截,構(gòu)成了八個角。如果兩個角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。

  同旁外角:兩個角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7

  終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:

  A{bb=k_360+a,k∈Z}表示角度制;

  B{bb=2kπ+a,k∈Z}表示弧度制

  初中數(shù)學(xué)知識點總結(jié) 12

  第一章 豐富的圖形世界

  1、幾何圖形

  從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

  2、點、線、面、體

  (1)幾何圖形的組成

  點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

  線:面和面相交的地方是線,分為直線和曲線。

  面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。

  (2)點動成線,線動成面,面動成體。

  3、生活中的立體圖形

  生活中的立體圖形

  柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

  正有理數(shù) 整數(shù)

  有理數(shù) 零 有理數(shù)

  負(fù)有理數(shù) 分?jǐn)?shù)

  2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

  3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

  4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

  5、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

  正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。互為相反數(shù)的兩個數(shù)的絕對值相等。

  6、有理數(shù)比較大。赫龜(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。

  7、有理數(shù)的運算:

  (1)五種運算:加、減、乘、除、乘方

  多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。

  有理數(shù)加法法則:

  同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  一個數(shù)同0相加,仍得這個數(shù)。

  互為相反數(shù)的兩個數(shù)相加和為0。

  有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)!

  有理數(shù)乘法法則:

  兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

  任何數(shù)與0相乘,積仍為0。

  有理數(shù)除法法則:

  兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。

  0除以任何非0的數(shù)都得0。

  注意:0不能作除數(shù)。

  有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。

  正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。

  (2)有理數(shù)的運算順序

  先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

  (3)運算律

  加法交換律 加法結(jié)合律

  乘法交換律 乘法結(jié)合律

  乘法對加法的分配律

  8、科學(xué)記數(shù)法

  一般地,一個大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)-1)

  第三章 整式及其加減

  1、代數(shù)式

  用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

  注意:①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;

 、诖鷶(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;

  ③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。

  ※代數(shù)式的書寫格式:

  ①代數(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;

 、跀(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;

  ③帶分?jǐn)?shù)與字母相乘時,應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫作;

 、軘(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;

 、菰诖鷶(shù)式中出現(xiàn)除法運算時,一般寫成分?jǐn)?shù)的形式,如4÷(a-4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號和括號的雙重作用。

 、拊诒硎竞(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。

  2、整式:單項式和多項式統(tǒng)稱為整式。

 、賳雾検剑憾际菙(shù)字和字母乘積的'形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。

  注意:

  1、單獨的一個數(shù)或一個字母也是單項式;

  2、單獨一個非零數(shù)的次數(shù)是0;

  3、當(dāng)單項式的系數(shù)為1或-1時,這個“1”應(yīng)省略不寫,如-ab的系數(shù)是-1,a3b的系數(shù)是1。

 、诙囗検剑簬讉單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。

  3、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  注意:

 、偻愴椨袃蓚條件:

  a、所含字母相同;

  b、相同字母的指數(shù)也相同。

 、谕愴椗c系數(shù)無關(guān),與字母的排列順序無關(guān);

 、蹘讉常數(shù)項也是同類項。

  4、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  5、去括號法則

 、俑鶕(jù)去括號法則去括號:

  括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。

 、诟鶕(jù)分配律去括號:

  括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據(jù)乘法的分配律用+1或-1去乘括號里的每一項以達(dá)到去括號的目的。

  6、添括號法則

  添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。

  7、整式的運算:

  整式的加減法:

  (1)去括號;

  (2)合并同類項。

  第四章 基本平面圖形

  2、直線的性質(zhì)

  (1)直線公理:經(jīng)過兩個點有且只有一條直線。(兩點確定一條直線。)

  (2)過一點的直線有無數(shù)條。

  (3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

  3、線段的性質(zhì)

  (1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)

  (2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

  (3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

  4、線段的中點:

  點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉(zhuǎn)而成的。

  6、角的表示

  角的表示方法有以下四種:

  ①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。

 、谟眯懙南ED字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

 、苡萌齻大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。

  7、角的度量

  角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

  1°=60’,1’=60”

  8、角的平分線

  從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  9、角的性質(zhì)

  (1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

  (2)角的大小可以度量,可以比較,角可以參與運算。

  10、平角和周角:一條射線繞著它的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。

  11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。

  從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。

  12、圓:平面上,一條線段繞著一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

  圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。

  第五章 一元一次方程

  1、方程

  含有未知數(shù)的等式叫做方程。

  2、方程的解

  能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

  3、等式的性質(zhì)

  (1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。

  (2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。

  4、一元一次方程

  只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

  5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.

  6、解一元一次方程的一般步驟:

  (1)去分母

  (2)去括號

  (3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)

  (4)合并同類項

  (5)將未知數(shù)的系數(shù)化為1。

  第六章 數(shù)據(jù)的收集與整理

  1、普查與抽樣調(diào)查

  為了特定目的對全部考察對象進(jìn)行的全面調(diào)查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

  從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。

  2、扇形統(tǒng)計圖

  扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)

  圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)

  3、頻數(shù)直方圖

  頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

  4、各種統(tǒng)計圖的特點

  條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

  折線統(tǒng)計圖:能清楚地反映事物的變化情況。

  扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

  初中數(shù)學(xué)知識點總結(jié) 13

  第二章整式的加減

  2、1整式

  1、單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù)、單項式指的是數(shù)或字母的積的代數(shù)式、單獨一個數(shù)或一個字母也是單項式、因此,判斷代數(shù)式是否是單項式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運算關(guān)系,其也不是單項式、

  2、單項式的系數(shù):是指單項式中的數(shù)字因數(shù);

  3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和、

  4、多項式:幾個單項式的`和。判斷代數(shù)式是否是多項式,關(guān)鍵要看代數(shù)式中的每一項是否是單項式、每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)項的次數(shù),這里是次數(shù)項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式、特別注意多項式的項包括它前面的性質(zhì)符號、

  5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項式和多項式的每一項都包括它前面的符號。

  6、單項式和多項式統(tǒng)稱為整式。

  2、2整式的加減

  1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關(guān)。

  2、同類項必須同時滿足兩個條件:

 。1)所含字母相同;

 。2)相同字母的次數(shù)相同,二者缺一不可、同類項與系數(shù)大小、字母的排列順序無關(guān)

  3、合并同類項:把多項式中的同類項合并成一項?梢赃\用交換律,結(jié)合律和分配律。

  4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;

  5、去括號法則:去括號,看符號:是正號,不變號;是負(fù)號,全變號。

  6、整式加減的一般步驟:

  一去、二找、三合

  (1)如果遇到括號按去括號法則先去括號。

  (2)結(jié)合同類項。

 。3)合并同類項葫蘆島。

  初中數(shù)學(xué)知識點總結(jié) 14

  二元二次方程與二元二次方程組以及解法要領(lǐng)的孩子試點已經(jīng)為大家講完,接下來給大家?guī)淼闹R點內(nèi)容是數(shù)軸,希望同學(xué)們了解有向直線和數(shù)軸的知識要領(lǐng)了。

  數(shù)軸

  11有向直線

  在科學(xué)技術(shù)和日常生活中,為了區(qū)別一條直線的兩個不同方向,可以規(guī)定其中一方向為正向,另一方向為負(fù)相

  規(guī)定了正方向的直線,叫做有向直線,讀作有向直線l

  12數(shù)軸

  我們把數(shù)軸上任意一點所對應(yīng)的實數(shù)稱為點的坐標(biāo)

  對于每一個坐標(biāo)(實數(shù)),在數(shù)周上可以找到唯一的點與之對應(yīng)這就是直線的坐標(biāo)化

  數(shù)軸上任意一條有向線段的數(shù)量等于它的終點坐標(biāo)與起點坐標(biāo)的差任意一條有向線段的長度等于它兩個斷電坐標(biāo)差的絕對值

  上面的內(nèi)容是初中數(shù)學(xué)知識點之?dāng)?shù)軸,相信同學(xué)們看過以后都可以很好的掌握了吧。如果想要了解更多更全的初中數(shù)學(xué)知識就來關(guān)注吧。

  初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系

  下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的'數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成

  對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

  通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)

  下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

  一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

  希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識點:因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

  初中數(shù)學(xué)知識點:因式分解

  下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

  ①確定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

  ①不準(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

 、奘醉椮(fù)號放括號外

  ⑦括號內(nèi)同類項合并。

  通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

  初中數(shù)學(xué)知識點總結(jié) 15

  1、正數(shù)和負(fù)數(shù)的有關(guān)概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);

  0既不是正數(shù),也不是負(fù)數(shù)。

  (2)正數(shù)和負(fù)數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側(cè),表示負(fù)數(shù)的點在原點的左側(cè)。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負(fù)數(shù)。

  4、任何數(shù)的絕對值是非負(fù)數(shù)。

  最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負(fù)數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的`符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和.

  (2)符號相反的兩數(shù)相加:當(dāng)兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當(dāng)兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零.

  (3)一個數(shù)同零相加,仍得這個數(shù).

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負(fù)數(shù)前面的加號可以省略不寫

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負(fù),再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號 第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為 0 時,積的符號由負(fù)因數(shù)的個數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù);

  當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

  初中數(shù)學(xué)知識點總結(jié) 16

  平方根:

 、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

 、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

 、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

 、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

 、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

  ②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

  ③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。

  ③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

  初中數(shù)學(xué)平行四邊形的性質(zhì)知識點

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

  (1)平行四邊形的對邊平行且相等;

  (2)平行四邊形的鄰角互補(bǔ),對角相等;

  (3)平行四邊形的對角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類:與四邊形的對邊有關(guān)

  (1)兩組對邊分別平行的四邊形是平行四邊形;

  (2)兩組對邊分別相等的四邊形是平行四邊形;

  (3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的對角有關(guān)

  (4)兩組對角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的對角線有關(guān)

  (5)對角線互相平分的'四邊形是平行四邊形

  初中數(shù)學(xué)函數(shù)知識點總結(jié)

  1.一次函數(shù)

  (1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù)。特別地,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)

  所以,正比例函數(shù)是特殊的一次函數(shù)。

  (2)一次函數(shù)的圖像及性質(zhì):

  1在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。

  2一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。

  3正比例函數(shù)的圖像總是過原點。

  4k,b與函數(shù)圖像所在象限的關(guān)系:

  當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小。

  當(dāng)k>0,b>0時,直線通過一、二、三象限;

  當(dāng)k>0,b<0時,直線通過一、三、四象限;

  當(dāng)k<0,b>0時,直線通過一、二、四象限;

  當(dāng)k<0,b<0時,直線通過二、三、四象限;

  當(dāng)b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。

  2.二次函數(shù)

  (1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。

  (2)二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);

  頂點式:y=a(x-h)^2+k(拋物線的頂點P(h,k));

  交點式:

  (3)二次函數(shù)的圖像與性質(zhì)

  1二次函數(shù)的圖像是一條拋物線。

  2拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

  特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)。

  3二次項系數(shù)a決定拋物線的開口方向。

  當(dāng)a>0時,拋物線向上開口;

  當(dāng)a<0時,拋物線向下開口。

  4一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

  5拋物線與x軸交點個數(shù)

  Δ=b^2-4ac>0時,拋物線與x軸有2個交點;

  Δ=b^2-4ac=0時,拋物線與x軸有1個交點;

  Δ=b^2-4ac<0時,拋物線與x軸沒有交點。

  3.反比例函數(shù)

  (1)定義:形如y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

  (2)反比例函數(shù)圖像性質(zhì):

  1反比例函數(shù)的圖像為雙曲線;

  當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù);

  當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù);

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  2由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

  初中數(shù)學(xué)知識點總結(jié) 17

  1.相似三角形定義:

  對應(yīng)角相等,對應(yīng)邊成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。

  3.相似三角形的相似比:

  相似三角形的對應(yīng)邊的比叫做相似比。

  4.相似三角形的預(yù)備定理:

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。

  從表中可以看出只要將全等三角形判定定理中的"對應(yīng)邊相等"的條件改為"對應(yīng)邊

  成比例"就可得到相似三角形的判定定理,這就是我們數(shù)學(xué)中的用類比的方法,在舊知識的基礎(chǔ)上找出新知識并從中探究新知識掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似。

  (2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似。

  7.相似三角形的性質(zhì)定理:

  (1)相似三角形的對應(yīng)角相等。

  (2)相似三角形的對應(yīng)邊成比例。

  (3)相似三角形的`對應(yīng)高線的比,對應(yīng)中線的比和對應(yīng)角平分線的比都等于相似比。

  (4)相似三角形的周長比等于相似比。

  (5)相似三角形的面積比等于相似比的平方。

  8. 相似三角形的傳遞性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

  初中數(shù)學(xué)知識點總結(jié) 18

  一、角的定義

  “靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。

  “動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

  如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

  二、角的換算:1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、補(bǔ)角的概念和性質(zhì):

  概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補(bǔ)角。

  如果兩個角的和是一個直角,那么這兩個角叫做互為余角。

  說明:互補(bǔ)、互余是指兩個角的數(shù)量關(guān)系,沒有位置關(guān)系。

  性質(zhì):同角(或等角)的余角相等;

  同角(或等角)的補(bǔ)角相等。

  四、角的比較方法:

  角的大小比較,有兩種方法:

  (1)度量法(利用量角器);

  (2)疊合法(利用圓規(guī)和直尺)。

  五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的.兩部分,這條射線叫做這個角的平分線。

  常見考法

  (1)考查與時鐘有關(guān)的問題;

  (2)角的計算與度量。

  誤區(qū)提醒

  角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時易受10進(jìn)制影響而出錯。

  【典型例題】(2010云南曲靖)從3時到6時,鐘表的時針旋轉(zhuǎn)角的度數(shù)是( )

  【答案】3時到6時,時針旋轉(zhuǎn)的是一個周角的1/4,故是90度 ,本題選C.

  初中數(shù)學(xué)知識點總結(jié) 19

  第一章 有理數(shù)

  1.1 正數(shù)和負(fù)數(shù)

 、闭龜(shù)和負(fù)數(shù)的概念

  負(fù)數(shù):比0小的數(shù) 正數(shù):比0大的數(shù) 0既不是正數(shù),也不是負(fù)數(shù)

  注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時,-a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時,-a是正數(shù);當(dāng)a表示0時,-a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負(fù)號的數(shù)是負(fù)數(shù),這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)

  ②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。

  2.具有相反意義的量

  若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:

  零上8℃表示為:+8℃;零下8℃表示為:-8℃

  3.0表示的意義

 、0表示“ 沒有”,如教室里有0個人,就是說教室里沒有人;

 、0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。

 。3)0表示一個確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。

  1.2 有理數(shù)

  1.有理數(shù)的概念

 、耪麛(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))

  ⑵正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)

 、钦麛(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。

  理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。3,整數(shù)也能化成分?jǐn)?shù),也是有理數(shù)

  注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像-2,-4,-6,-8…也是偶數(shù),-1,-3,-5…也是奇數(shù)。

  3.數(shù)軸

 、睌(shù)軸的概念

  規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。

  注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。

  2.數(shù)軸上的點與有理數(shù)的關(guān)系

 、潘械挠欣頂(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的點表示,0用原點表示。

 、扑械挠欣頂(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點π不是有理數(shù))

  3.利用數(shù)軸表示兩數(shù)大小

 、旁跀(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;

 、普龜(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);

 、莾蓚負(fù)數(shù)比較,距離原點遠(yuǎn)的數(shù)比距離原點近的數(shù)小。

  4.數(shù)軸上特殊的最大(。⿺(shù)

 、抛钚〉淖匀粩(shù)是0,無最大的自然數(shù);

 、谱钚〉恼麛(shù)是1,無最大的正整數(shù);

 、亲畲蟮呢(fù)整數(shù)是-1,無最小的負(fù)整數(shù)

  5.a可以表示什么數(shù)

 、臿>0表示a是正數(shù);反之,a是正數(shù),則a>0;

 、芶<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0

 、莂=0表示a是0;反之,a是0,,則a=0

  4.相反數(shù)

 、毕喾磾(shù)

  只有符號不同的兩個數(shù)叫做互為相反數(shù),其中一個是另一個的相反數(shù),0的相反數(shù)是0。

  注意:⑴相反數(shù)是成對出現(xiàn)的;⑵相反數(shù)只有符號不同,若一個為正,則另一個為負(fù);

 、0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。

  2.相反數(shù)的性質(zhì)與判定

  ⑴任何數(shù)都有相反數(shù),且只有一個;

 、0的相反數(shù)是0;

 、腔橄喾磾(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0

  3.相反數(shù)的幾何意義

  在數(shù)軸上與原點距離相等的兩點表示的兩個數(shù),是互為相反數(shù);互為相反數(shù)的兩個數(shù),在數(shù)軸上的對應(yīng)點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數(shù)對應(yīng)原點;原點表示0的相反數(shù)。

  說明:在數(shù)軸上,表示互為相反數(shù)的兩個點關(guān)于原點對稱。

  4.相反數(shù)的求法

 、徘笠粋數(shù)的相反數(shù),只要在它的前面添上負(fù)號“-”即可求得(如:5的相反數(shù)是-5);

  ⑵求多個數(shù)的和或差的相反數(shù)時,要用括號括起來再添“-”,然后化簡(如;5a+b的相反數(shù)是-(5a+b);喌-5a-b);

  ⑶求前面帶“-”的單個數(shù),也應(yīng)先用括號括起來再添“-”,然后化簡(如:-5的相反數(shù)是-(-5),化簡得5)

  5.相反數(shù)的表示方法

 、乓话愕,數(shù)a 的相反數(shù)是-a ,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。

  當(dāng)a>0時,-a<0(正數(shù)的相反數(shù)是負(fù)數(shù))

  當(dāng)a<0時,-a>0(負(fù)數(shù)的相反數(shù)是正數(shù))

  當(dāng)a=0時,-a=0,(0的相反數(shù)是0)

  5.絕對值

 、苯^對值的幾何定義

  一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做a的絕對值,記作|a|。

  2.絕對值的代數(shù)定義

 、乓粋正數(shù)的絕對值是它本身;⑵一個負(fù)數(shù)的絕對值是它的相反數(shù);⑶0的絕對值是0.

  可用字母表示為:

 、偃绻鸻>0,那么|a|=a;②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。

  可歸納為①:a≥0,<═> |a|=a (非負(fù)數(shù)的絕對值等于本身;絕對值等于本身的數(shù)是非負(fù)數(shù)。)

  ②a≤0,<═> |a|=-a (非正數(shù)的絕對值等于其相反數(shù);絕對值等于其相反數(shù)的數(shù)是非正數(shù)。)

  經(jīng)典考題

  如數(shù)軸所示,化簡下列各數(shù)

  |a|, |b| , |c| , |a-b|, |a-c| , |b+c|

  解:由題知道,因為a>0 ,b<0,c<0, a-b>0, a-c>0, b+c<0,

  所以|a|=a ,|b|=-b, |c|=-c ,|a-b|=a-b , |a-c|=a-c ,|b+c|=-(b+c)=-b-c

  3.絕對值的性質(zhì)

  任何一個有理數(shù)的絕對值都是非負(fù)數(shù),也就是說絕對值具有非負(fù)性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的絕對值是0;絕對值是0的.數(shù)是0.即:a=0 <═> |a|=0;

 、埔粋數(shù)的絕對值是非負(fù)數(shù),絕對值最小的數(shù)是0.即:|a|≥0;

  ⑶任何數(shù)的絕對值都不小于原數(shù)。即:|a|≥a;

 、冉^對值是相同正數(shù)的數(shù)有兩個,它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;

 、苫橄喾磾(shù)的兩數(shù)的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

 、式^對值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;

 、巳魩讉數(shù)的絕對值的和等于0,則這幾個數(shù)就同時為0。即|a|+|b|=0,則a=0且b=0。

 。ǚ秦(fù)數(shù)的常用性質(zhì):若幾個非負(fù)數(shù)的和為0,則有且只有這幾個非負(fù)數(shù)同時為0)

  經(jīng)典考題

  已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

  解:因為|a+3|≥0|2b-2|≥0|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

  所以|a+3|=0 |2b-2|=0 |c-1|=0

  即a=-3 ,b=1 ,c=1

  所以a+b+c=-3+1+1=-1

  4.有理數(shù)大小的比較

 、爬脭(shù)軸比較兩個數(shù)的大。簲(shù)軸上的兩個數(shù)相比較,左邊的總比右邊的;

 、评媒^對值比較兩個負(fù)數(shù)的大。簝蓚負(fù)數(shù)比較大小,絕對值大的反而。划愄杻蓴(shù)比較大小,正數(shù)大于負(fù)數(shù)。

  5.絕對值的化簡

 、佼(dāng)a≥0時, |a|=a ;②當(dāng)a≤0時, |a|=-a

  6.已知一個數(shù)的絕對值,求這個數(shù)

  一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離,一般地,絕對值為同一個正數(shù)的有理數(shù)有兩個,它們互為相反數(shù),絕對值為0的數(shù)是0,沒有絕對值為負(fù)數(shù)的數(shù)。如:|a|=5,則a=土5

  1.3 有理數(shù)的加減法

  1.有理數(shù)的加法法則

  ⑴同號兩數(shù)相加,取相同的符號,并把絕對值相加;

 、平^對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;

 、腔橄喾磾(shù)的兩數(shù)相加,和為零;

  ⑷一個數(shù)與零相加,仍得這個數(shù)。

  2.有理數(shù)加法的運算律

 、偶臃ń粨Q律:a+b=b+a

 、萍臃ńY(jié)合律:(a+b)+c=a+(b+c)

  在運用運算律時,一定要根據(jù)需要靈活運用,以達(dá)到化簡的目的,通常有下列規(guī)律:

 、倩橄喾磾(shù)的兩個數(shù)先相加——“相反數(shù)結(jié)合法”;

 、诜栂嗤膬蓚數(shù)先相加——“同號結(jié)合法”;

 、鄯帜赶嗤臄(shù)先相加——“同分母結(jié)合法”;

 、軒讉數(shù)相加得到整數(shù),先相加——“湊整法”;

 、菡麛(shù)與整數(shù)、小數(shù)與小數(shù)相加——“同形結(jié)合法”。

  3.加法性質(zhì)

  一個數(shù)加正數(shù)后的和比原數(shù)大;加負(fù)數(shù)后的和比原數(shù)。患0后的和等于原數(shù)。即:

 、女(dāng)b>0時,a+b>a ⑵當(dāng)b<0時,a+b

  4.有理數(shù)減法法則

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)。用字母表示為:a-b=a+(-b)。

  5.有理數(shù)加減法統(tǒng)一成加法的意義

  在有理數(shù)加減法混合運算中,根據(jù)有理數(shù)減法法則,可以將減法轉(zhuǎn)化成加法后,再按照加法法則進(jìn)行計算。

  在和式里,通常把各個加數(shù)的括號和它前面的加號省略不寫,寫成省略加號的和的形式。如:

  (-8)+(-7)+(-6)+(+5)=-8-7-6+5.

  和式的讀法:①按這個式子表示的意義讀作“負(fù)8、負(fù)7、負(fù)6、正5的和”

 、诎催\算意義讀作“負(fù)8減7減6加5”

  6.有理數(shù)加減混合運算中運用結(jié)合律時的一些技巧:

  Ⅰ.把符號相同的加數(shù)相結(jié)合(同號結(jié)合法)

  (-33)-(-18)+(-15)-(+1)+(+23)

  原式=-33+(+18)+(-15)+(-1)+(+23) (將減法轉(zhuǎn)換成加法)

  =-33+18-15-1+23 (省略加號和括號)

  =(-33-15-1)+(18+23) (把符號相同的加數(shù)相結(jié)合)

  =-49+41 (運用加法法則一進(jìn)行運算)

  =-8 (運用加法法則二進(jìn)行運算)

 、.把和為整數(shù)的加數(shù)相結(jié)合 (湊整法)

  (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)

  原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (將減法轉(zhuǎn)換成加法)

  =6.6-5.2+3.8-2.6-4.8 (省略加號和括號)

  =(6.6-2.6)+(-5.2-4.8)+3.8 (把和為整數(shù)的加數(shù)相結(jié)合)

  =4-10+3.8 (運用加法法則進(jìn)行運算)

  =7.8-10 (把符號相同的加數(shù)相結(jié)合,并進(jìn)行運算)

  =-2.2 (得出結(jié)論)

  1.4有理數(shù)的乘除法

  1.有理數(shù)的乘法法則

  法則一:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;(“同號得正,異號得負(fù)”專指“兩數(shù)相乘”的情況,如果因數(shù)超過兩個,就必須運用法則三)

  法則二:任何數(shù)同0相乘,都得0;

  法則三:幾個不是0的數(shù)相乘,負(fù)因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負(fù)因數(shù)的個數(shù)是奇數(shù)時,積是負(fù)數(shù);

  法則四:幾個數(shù)相乘,如果其中有因數(shù)為0,則積等于0.

  3.有理數(shù)的乘法運算律

 、懦朔ń粨Q律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。即ab=ba

 、瞥朔ńY(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。即(ab)c=a(bc).

 、浅朔ǚ峙渎桑阂话愕兀粋數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,在把積相加。即a(b+c)=ab+ac

  4.有理數(shù)的除法法則

 。1)除以一個不等0的數(shù),等于乘以這個數(shù)的倒數(shù)。

 。2)兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0

  5.有理數(shù)的乘除混合運算

 。1)乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結(jié)果。

 。2)有理數(shù)的加減乘除混合運算,如無括號指出先做什么運算,則按照‘先乘除,后加減’的順序進(jìn)行。

  2.乘方的性質(zhì)

  (1)負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪的正數(shù)。

 。2)正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  3.有理數(shù)的混合運算

  做有理數(shù)的混合運算時,應(yīng)注意以下運算順序:

  (1)先乘方,再乘除,最后加減;

 。2)同級運算,從左到右進(jìn)行;

 。3)如有括號,先做括號內(nèi)的運算,按小括號,中括號,大括號依次進(jìn)行。

  第二章 整式的加減

  2.1整式

  代數(shù)式:用基本運算符號把數(shù)和字母連接而成的式子叫做代數(shù)式,如n,-1,2n+500,abc。單獨的一個數(shù)或一個字母也是代數(shù)式。

  單項式:表示數(shù)與字母的乘積的代數(shù)式叫單項式。單獨的一個數(shù)或一個字母也是代數(shù)式。

  單項式的系數(shù):單項式中的數(shù)字因數(shù)

  單項式的次數(shù):一個單項式中,所有字母的指數(shù)和

  多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數(shù)項。

  多項式里次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。常數(shù)項的次數(shù)為0。

  整式:單項式和多項式統(tǒng)稱為整式。

  注意:分母上含有字母的不是整式。

  代數(shù)式書寫規(guī)范:

 、贁(shù)與字母、字母與字母中的乘號可以省略不寫或用“·”表示,并把數(shù)字放到字母前;

 、诔霈F(xiàn)除式時,用分?jǐn)?shù)表示;

  ③帶分?jǐn)?shù)與字母相乘時,帶分?jǐn)?shù)要化成假分?jǐn)?shù);

 、苋暨\算結(jié)果為加減的式子,當(dāng)后面有單位時,要用括號把整個式子括起來。

  2.2整式的加減

  1合并同類項

  同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  合并同類項的法則:同類項的系數(shù)相加,所得的結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  合并同類項的步驟:

 。1)準(zhǔn)確的找出同類項;

 。2)運用加法交換律,把同類項交換位置后結(jié)合在一起;

 。3)利用法則,把同類項的系數(shù)相加,字母和字母的指數(shù)不變;

  (4)寫出合并后的結(jié)果。

  2去括號的法則

 。1)括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項的符號都不變;

 。2)括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項的符號都要改變。

  3整式的加減:進(jìn)行整式的加減運算時,如果有括號先去括號,再合并同類項。

  整式加減的步驟:(1)列出代數(shù)式;(2)去括號;(3)合并同類項。

  第三章 一元一次方程

  3.1一元一次方程的概念:只含有一個未知數(shù)(元)且未知數(shù)的指數(shù)是1(次)的方程叫做一元一次方程。一般形式:ax+b=0(a≠0)

  注意:未知數(shù)在分母中時,它的次數(shù)不能看成是1次。如,它不是一元一次方程。

  3.2解一元一次方程

  方程的解:能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

  解方程:求方程的解的過程叫做解方程。

  等式的性質(zhì):(1)等式兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍是等式;

 。2)等式兩邊都乘或除以同一個不等于0的數(shù),所得結(jié)果仍是等式。

  移項

  移項:方程中的某些項改變符號后,可以從方程的一邊移到另一邊,這樣的變形叫做移項。

  移項的依據(jù):(1)移項實際上就是對方程兩邊進(jìn)行同時加減,根據(jù)是等式的性質(zhì)1;(2)系數(shù)化為1實際上就是對方程兩邊同時乘除,根據(jù)是等式的性質(zhì)2。

  移項的作用:移項時一般把含未知數(shù)的項向左移,常數(shù)項往右移,使左邊對含未知數(shù)的項合并,右邊對常數(shù)項合并。

  注意:移項時要跨越“=”號,移過的項一定要變號。

  解一元一次方程的一般步驟:去分母、去括號、移項、合并同類項、未知數(shù)的系數(shù)化為1。

  注意:去分母時不可漏乘不含分母的項。分?jǐn)?shù)線有括號的作用,去掉分母后,若分子是多項式,要加括號。

  3.3方程解決問題

  列一元一次方程解應(yīng)用題的基本步驟:審清題意、設(shè)未知數(shù)(元)、列出方程、解方程、寫出答案。關(guān)鍵在于抓住問題中的有關(guān)數(shù)量的相等關(guān)系,列出方程。

  解決問題的策略:利用表格和示意圖幫助分析實際問題中的數(shù)量關(guān)系

  實際問題的常見類型:

 。▎挝唬郝烦獭、千米;時間——秒、分、時;速度——米/秒、米/分、千米/小時)

  工程問題:工作總量=工作時間×工作效率,工作總量=各部分工作量的和

  等積變形問題:長方體的體積=長×寬×高;圓柱的體積=底面積×高;鍛造前的體積=鍛造后的體積

  利息問題:本息和=本金+利息;利息=本金×利率

  第四章 幾何圖形初步

  4.1幾何圖形

  1.立體圖形與平面圖形

  從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

  立體圖形:有些幾何圖形的各個部分不都在同一平面內(nèi),它們是立體圖形。

  平面圖形:有些幾何圖形的各個部分都在同一平面內(nèi),它們是平面圖形。

  2、點、線、面、體

 。1)幾何圖形的組成

  點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

  線:面和面相交的地方是線,分為直線和曲線。

  面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。

 。2)點動成線,線動成面,面動成體。

  4、棱柱及其有關(guān)概念:

  棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

  側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。

  n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點。

  棱柱的所有側(cè)棱長都相等,棱柱的上下兩個底面是相同的多邊形,直棱柱的側(cè)面是長方形。棱柱的側(cè)面有可能是長方形,也有可能是平行四邊形。

  5、正方體的平面展開圖:11種

  6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

  7、三視圖

  物體的三視圖指主視圖、俯視圖、左視圖。

  主視圖:從正面看到的圖,叫做主視圖。

  左視圖:從左面看到的圖,叫做左視圖。

  俯視圖:從上面看到的圖,叫做俯視圖。

  4.2直線、射線、線段

  1、直線、射線、線段的比較

  名稱

  不同點

  聯(lián)系

  共同點

  延伸性

  端點數(shù)

  線段

  不能延伸

  2

  線段向一方延長就成射線,向兩方延長就成直線

  都是直的線

  射線

  只能向一方延伸

  1

  直線

  可向兩方無限延伸

  無

  2、點、直線、射線和線段的表示

  在幾何里,我們常用字母表示圖形。

  一個點可以用一個大寫字母表示,如點A

  一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示,如直線l,或者直線AB

  一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面),如射線l,射線AB

  一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示,如線段l,線段AB

  3、點和直線的位置關(guān)系有兩種:

  ①點在直線上,或者說直線經(jīng)過這個點。

 、邳c在直線外,或者說直線不經(jīng)過這個點。

  4、線段的性質(zhì)

 。1)線段公理:兩點之間的所有連線中,線段最短。

 。2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

 。3)線段的中點到兩端點的距離相等。

 。4)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

 。5)線段的比較:1.目測法 2.疊合法 3.度量法

  5、線段的中點:

  點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。

  6、直線的性質(zhì)

 。1)直線公理:經(jīng)過兩個點有且只有一條直線。

 。2)過一點的直線有無數(shù)條。

 。3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

 。4)直線上有無窮多個點。

  (5)兩條不同的直線至多有一個公共點。

  4.3角

  角:有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉(zhuǎn)而成的。

  平角和周角:一條射線繞著它的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。

  角的表示:

 、儆脭(shù)字表示單獨的角,如∠1,∠2,∠3等。

 、谟眯懙南ED字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

 、苡萌齻大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。

  用一副三角板,可以畫出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°

  角的度量

  角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

  把1’ 的角60等分,每一份叫做1秒的角,1秒記作“1””。

  角的性質(zhì)

  (1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

 。2)角的大小可以度量,可以比較

 。3)角可以參與運算。

  角的平分線

  從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  余角和補(bǔ)角

 、偃绻麅蓚角的和是一個直角,這兩個角叫做互為余角,簡稱互余,其中一個角是另一個角的余角。用數(shù)學(xué)語言表示為如果∠α+∠β=90°,那么∠α與∠β互余;反過來,如果∠α與∠β互余,那么∠α+∠β=90°

 、谌绻麅蓚角的和是一個平角,這兩個角叫做互為補(bǔ)角,簡稱互補(bǔ),其中一個角是另一個角的補(bǔ)角。用數(shù)學(xué)語言表示為如果∠α+∠β=180°,那么∠α與∠β互補(bǔ);反過來如果∠α與∠β互補(bǔ),那么∠α+∠β=180°

 、弁牵ɑ虻冉牵┑挠嘟窍嗟;同角(或等角)的補(bǔ)角相等。

  對頂角

 、僖粚,如果它們的頂點重合,兩條邊互為反向延長線,我們把這樣的兩個角叫做互為對頂角,其中一個角叫做另一個角的對頂角。

  注意:對頂角是成對出現(xiàn)的,它們有公共的頂點;只有兩條直線相交時才能形成對頂角。

 、趯斀堑男再|(zhì):對頂角相等

  如圖,∠1和∠4是對頂角,∠2和∠3是對頂角

  ∠1=∠4,∠2=∠3

  初中數(shù)學(xué)知識點總結(jié) 20

  軸對稱的定義:

  把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,這條直線叫做對稱軸,折疊后重合的點是對應(yīng)點,叫做對稱點。軸對稱和軸對稱圖形的特性是相同的,對應(yīng)點到對稱軸的距離都是相等的。

  軸對稱的性質(zhì):

  (1)對應(yīng)點所連的線段被對稱軸垂直平分;

  (2)對應(yīng)線段相等,對應(yīng)角相等;

 。3)關(guān)于某直線對稱的兩個圖形是全等圖形。

  軸對稱的判定:

  如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

  這樣就得到了以下性質(zhì):

  如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。

  類似地,軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。

  線段的垂直平分線上的點與這條線段的兩個端點的距離相等。

  對稱軸是到線段兩端距離相等的點的集合。

  軸對稱作用:

  可以通過對稱軸的一邊從而畫出另一邊。

  可以通過畫對稱軸得出的兩個圖形全等。

  擴(kuò)展到軸對稱的應(yīng)用以及函數(shù)圖像的意義。

  軸對稱的應(yīng)用

  關(guān)于平面直角坐標(biāo)系的X,Y對稱意義

  如果在坐標(biāo)系中,點A與點B關(guān)于直線X對稱,那么點A的橫坐標(biāo)不變,縱坐標(biāo)為相反數(shù)。

  相反的`,如果有兩點關(guān)于直線Y對稱,那么點A的橫坐標(biāo)為相反數(shù),縱坐標(biāo)不變。

  關(guān)于二次函數(shù)圖像的對稱軸公式(也叫做軸對稱公式)

  設(shè)二次函數(shù)的解析式是y=ax2+bx+c

  則二次函數(shù)的對稱軸為直線x=—b/2a,頂點橫坐標(biāo)為—b/2a,頂點縱坐標(biāo)為(4ac—b2)/4a

  在幾何證題、解題時,如果是軸對稱圖形,則經(jīng)常要添設(shè)對稱軸以便充分利用軸對稱圖形的性質(zhì)。

  譬如,等腰三角形經(jīng)常添設(shè)頂角平分線;

  矩形和等腰梯形問題經(jīng)常添設(shè)對邊中點連線和兩底中點連線;

  正方形,菱形問題經(jīng)常添設(shè)對角線等等。

  另外,如果遇到的圖形不是軸對稱圖形,則常選擇某直線為對稱軸,補(bǔ)添為軸對稱圖形,或?qū)⑤S一側(cè)的圖形通過翻折反射到另一側(cè),以實現(xiàn)條件的相對集中。

  初中數(shù)學(xué)知識點總結(jié) 21

  初中數(shù)學(xué)的學(xué)科地位很高,一直以來是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。

  圓心角

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

  推理過程

  根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠aob的位置時,顯然∠aob=∠aob,射線oa與oa重合,ob與ob重合,而同圓的半徑相等,oa=oa,ob=ob,從而點a與a重合,b與b重合。

  因此,弧ab與弧ab重合,ab與ab重合。即

  弧ab=弧ab,ab=ab。

  則得到上面定理。

  同樣還可以得到:

  在同圓或等圓中,如果兩條弧相等,那么他們所對的`圓心角相等,所對的弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。

  所以,在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,它們所對應(yīng)的其余各組量也相等。

  圓的圓心角知識要領(lǐng)很容易掌握,經(jīng)常會出現(xiàn)在關(guān)于圓的證明題中。

  初中數(shù)學(xué)知識點總結(jié) 22

  1、一元二次方程解法:

  (1)配方法:(X±a)2=b(b≥0)注:二次項系數(shù)必須化為1

  (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0

  若b2-4ac>0則有兩個不相等的.實根,若b2-4ac=0則有兩個相等的實根,若b2-4ac<0則無解

  若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

  (3)分解因式法

 、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

  平方差公式:a2-b2=0→(a+b)(a-b)=0

 、谶\用公式法:

  完全平方公式:a2±2ab+b2=0→(a±b)2=0

  ③十字相乘法

  2、銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin):對邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對邊,即cotA=b/a;

  3、積的關(guān)系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數(shù)關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  5、兩角和差公式

  sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

  初中數(shù)學(xué)知識點總結(jié) 23

  第一章圖形的認(rèn)識初步

  一、知識框架

  本章的主要內(nèi)容是圖形的初步認(rèn)識,從生活周圍熟悉的物體入手,對物體的形狀的認(rèn)識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認(rèn)識立體圖形與平面圖形的聯(lián)系。在此基礎(chǔ)上,認(rèn)識一些簡單的平面圖形——直線、射線、線段和角。

  二、本章書涉及的數(shù)學(xué)思想:

  分類討論思想。在過平面上若干個點畫直線時,應(yīng)注意對這些點分情況討論;在畫圖形時,應(yīng)注意圖形的'各種可能性。

  方程思想。在處理有關(guān)角的大小,線段大小的計算時,常需要通過列方程來解決。

  圖形變換思想。在研究角的概念時,要充分體會對射線旋轉(zhuǎn)的認(rèn)識。在處理圖形時應(yīng)注意轉(zhuǎn)化思想的應(yīng)用,如立體圖形與平面圖形的互相轉(zhuǎn)化。

  化歸思想。在進(jìn)行直線、線段、角以及相關(guān)圖形的計數(shù)時,總要劃歸到公式n(n—1)/2的具體運用上來。

  人教版七年級數(shù)學(xué)下冊主要包括相交線與平行線、平面直角坐標(biāo)系、三角形、二元一次方程組、不等式與不等式組和數(shù)據(jù)的收集、整理與表述六章內(nèi)容。

  第二章相交線與平行線

  一、知識框架

  二、知識概念

  鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補(bǔ)角。

  對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

  垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

  平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  同位角、內(nèi)錯角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

  內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。

  同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

  命題:判斷一件事情的語句叫命題。

  平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

  對應(yīng)點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。

  初中數(shù)學(xué)知識點總結(jié) 24

  三角形兩邊:

  定理三角形兩邊的和大于第三邊。

  推論三角形兩邊的差小于第三邊。

  三角形中位線定理:

  三角形的中位線平行于第三邊,并且等于它的一半。

  三角形的重心:

  三角形的重心到頂點的距離是它到對邊中點距離的2倍。

  在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線,三角形的三條中線交于一點,這一點叫做“三角形的重心”。

  與三角形有關(guān)的角:

  1、三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°,與三角形的形狀無關(guān)。

  2、直角三角形兩個銳角的關(guān)系:直角三角形的兩個銳角互余(相加為90°)。有兩個角互余的三角形是直角三角形。

  3、三角形外角的性質(zhì):三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和;三角形的一個外角大于與它不相鄰的任何一個內(nèi)角;三角形三個外角和為360°。

  全等三角形的.性質(zhì)和判定:

  全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉(zhuǎn)、對折也會構(gòu)成全等三角形。

 。ㄟ呥呥叄慈厡(yīng)相等的兩個三角形全等。

 。ㄟ吔沁叄,即三角形的其中兩條邊對應(yīng)相等,且兩條邊的夾角也對應(yīng)相等的兩個三角形全等。

 。ń沁吔牵慈切蔚钠渲袃蓚角對應(yīng)相等,且兩個角夾的的邊也對應(yīng)相等的兩個三角形全等。

 。ń墙沁叄,即三角形的其中兩個角對應(yīng)相等,且對應(yīng)相等的角所對應(yīng)的邊也對應(yīng)相等的兩個三角形全等。

  (斜邊、直角邊),即在直角三角形中一條斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。

  等邊三角形的判定:

  1、三邊相等的三角形是等邊三角形(定義)。

  2、三個內(nèi)角都相等的三角形是等邊三角形。

  3、有一個角是60度的等腰三角形是等邊三角形。

  4、有兩個角等于60度的三角形是等邊三角形。

  初中數(shù)學(xué)知識點總結(jié) 25

  一、可能性:

  1. 必然事件:有些事情我們能確定他一定會發(fā)生,這些事情稱為必然事件;

  2.不可能事件:有些事情我們能肯定他一定不會發(fā)生,這些事情稱為不可能事件;

  3.確定事件:必然事件和不可能事件都是確定的;

  4.不確定事件:有很多事情我們無法肯定他會不會發(fā)生,這些事情稱為不確定事件。

  5.一般來說,不確定事件發(fā)生的可能性是有大小的。.

  二、概率:

  1.概率的意義:表示一個事件發(fā)生的可能性大小的這個數(shù)叫做該事件的概率。

  2.必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0

  3.一步試驗事件發(fā)生的概率的計算公式是P=k/n,n為該事件所有等可能出現(xiàn)的結(jié)果數(shù),k為事件包含的結(jié)果數(shù)。兩步試驗事件發(fā)生的概率的發(fā)生的概率的計算方法有兩種,一種是列表法,另一種是畫樹狀圖,利用這兩種方法計算兩步實驗時,應(yīng)用樹狀圖或列表將簡單的兩步試驗所有可能的情況表示出來,從而計算隨機(jī)事件的概率。

  初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系

  下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的。數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成

  對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的'構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

  通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)

  下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

  一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

  希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識點:因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

  初中數(shù)學(xué)知識點總結(jié) 26

  動點與函數(shù)圖象問題常見的四種類型:

  1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  2、四邊形中的動點問題:動點沿四邊形的邊運動,判斷函數(shù)圖象.

  3、圓中的動點問題:動點沿圓周運動,判斷函數(shù)圖象.

  4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,判斷函數(shù)圖象.

  圖形運動與函數(shù)圖象問題常見的三種類型:

  1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,進(jìn)行分段,判斷函數(shù)圖象.

  2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,判斷函數(shù)圖象.

  3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,判斷函數(shù)圖象.

  動點問題常見的四種類型:

  1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

  2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

  3、圓中的動點問題:動點沿圓周運動,探究構(gòu)成的新圖形的邊角等關(guān)系.

  4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.

  總結(jié)反思:

  本題是二次函數(shù)的`綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

  解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認(rèn)識,發(fā)掘“動”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的

  解答函數(shù)的圖象問題一般遵循的步驟:

  1、根據(jù)自變量的取值范圍對函數(shù)進(jìn)行分段.

  2、求出每段的解析式.

  3、由每段的解析式確定每段圖象的形狀.

  對于用圖象描述分段函數(shù)的實際問題,要抓住以下幾點:

  1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

  2、自變量變化函數(shù)值也變化的增減變化情況.

  3、函數(shù)圖象的最低點和最高點.

【初中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

初中數(shù)學(xué)的知識點總結(jié)09-19

初中數(shù)學(xué)的知識點總結(jié)03-11

初中數(shù)學(xué)圓的知識點總結(jié)06-07

初中數(shù)學(xué)函數(shù)知識點總結(jié)04-08

初中數(shù)學(xué)知識點總結(jié)05-30

初中數(shù)學(xué)必學(xué)的知識點總結(jié)01-14

數(shù)學(xué)初中知識點總結(jié)01-15

初中數(shù)學(xué)知識點總結(jié)10-24

初中數(shù)學(xué)圓知識點總結(jié)10-17

初中數(shù)學(xué)知識點總結(jié)06-24